CVPR 2020 |用于3D目標(biāo)檢測的層級圖網(wǎng)絡(luò)
GU-net
本文設(shè)計了一個下采樣模塊,并將其重復(fù)堆疊 4 次以形成下采樣路徑,而將一個上采樣模塊重復(fù)堆疊兩次以構(gòu)成上采樣方式。類似 FPN、GU-net 生成三張點(diǎn)特征圖的特征金字塔。下采樣使用的是 FPS,然后通過KNN構(gòu)建局部區(qū)域,再使用 SA-GConv 更新特征,上采樣模塊的過程與下采樣模塊的過程相反,主要由 SA-GConv 執(zhí)行。
候選生成器
GU-net 生成了包含多級語義的三張點(diǎn)特征圖。一些先前的方法(如 VoteNet)僅使用一個特征圖進(jìn)行目標(biāo)預(yù)測。即使通過在上采樣過程中融合較低層的特征來計算較高層的特征,由于不同層的特征提供了各種語義,因此將多層特征一起用于候選生成會更加有益。本文提出了一種候選生成器,以改進(jìn)的投票模塊作為主要結(jié)構(gòu)來預(yù)測對象中心,該模型將多級特征轉(zhuǎn)換為相同的特征空間。接下來為了聚合特征,通過 FPS 保留 Np 的投票,該做法與 VoteNet 類似,從而融合多級特征以預(yù)測邊界框及其類別。
候選推理模塊
通過以上幾步,多層局部的語義信息已經(jīng)被很好的捕捉到了,但全局信息還沒有很好的學(xué)到,或者說可能有些目標(biāo)在點(diǎn)云中只體現(xiàn)出很小的一部分表面的點(diǎn),在這樣少的信息下很難正確的將其識別出來。其推理過程為:
其中 Hp 表示候選特征 tensor,P 表示候選的相對位置
論文實(shí)驗(yàn)
本文在 SUN RGB-D 和 ScanNet-V2 兩個數(shù)據(jù)集上進(jìn)行了實(shí)驗(yàn)。
此外,本文還進(jìn)行了消融實(shí)驗(yàn)以證明各模快的有效性。
結(jié)論
本文提出了一種新穎的 HGNet 框架,該框架通過層級圖建模學(xué)習(xí)語義。
具體來說,作者提出了一種新穎且輕巧的形狀注意圖卷積來捕獲局部形狀語義,該語義聚合了點(diǎn)的相對幾何位置的特征。基于 SA-GConv 和 SA-DeGConv 構(gòu)建了 GU-net,生成了包含多級語義的特征金字塔。要素金字塔投票的點(diǎn)將位于相應(yīng)的對象中心,并且進(jìn)一步聚合多級語義以生成候選。然后使用 ProRe 模塊在候選之間合并和傳播特征,從而利用全局場景語義來提高檢測性能。最后,對邊界框和類別進(jìn)行了預(yù)測。

發(fā)表評論
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
7月22-29日立即報名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會
-
7.30-8.1火熱報名中>> 全數(shù)會2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身智能機(jī)器人產(chǎn)業(yè)技術(shù)創(chuàng)新應(yīng)用論壇
-
免費(fèi)參會立即報名>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
8月5日立即報名>> 【在線會議】CAE優(yōu)化設(shè)計:醫(yī)療器械設(shè)計的應(yīng)用案例與方案解析
推薦專題